1,656 research outputs found

    Two polymorphisms facilitate differences in plasticity between two chicken major histocompatibility complex class I proteins

    Get PDF
    Major histocompatibility complex class I molecules (MHC I) present peptides to cytotoxic T-cells at the surface of almost all nucleated cells. The function of MHC I molecules is to select high affinity peptides from a large intracellular pool and they are assisted in this process by co-factor molecules, notably tapasin. In contrast to mammals, MHC homozygous chickens express a single MHC I gene locus, termed BF2, which is hypothesised to have co-evolved with the highly polymorphic tapasin within stable haplotypes. The BF2 molecules of the B15 and B19 haplotypes have recently been shown to differ in their interactions with tapasin and in their peptide selection properties. This study investigated whether these observations might be explained by differences in the protein plasticity that is encoded into the MHC I structure by primary sequence polymorphisms. Furthermore, we aimed to demonstrate the utility of a complimentary modelling approach to the understanding of complex experimental data. Combining mechanistic molecular dynamics simulations and the primary sequence based technique of statistical coupling analysis, we show how two of the eight polymorphisms between BF2*15:01 and BF2*19:01 facilitate differences in plasticity. We show that BF2*15:01 is intrinsically more plastic than BF2*19:01, exploring more conformations in the absence of peptide. We identify a protein sector of contiguous residues connecting the membrane bound ?3 domain and the heavy chain peptide binding site. This sector contains two of the eight polymorphic residues. One is residue 22 in the peptide binding domain and the other 220 is in the ?3 domain, a putative tapasin binding site. These observations are in correspondence with the experimentally observed functional differences of these molecules and suggest a mechanism for how modulation of MHC I plasticity by tapasin catalyses peptide selection allosterically

    Mass mortalities in bivalve populations: A review of the edible cockle Cerastoderma edule (L.)

    Get PDF
    Mass mortalities in bivalve populations have long been of particular concern, especially when the species supports a commercial fishery or is of conservation interest. Here we consider the evidence of mass mortalities of the edible cockle, Cerastoderma edule (L.). Through the construction of a conceptual model eight potential factors (or groups of factors) which may cause mass mortalities are identified and reviewed. These include: food limitation; density; oxygen depletion and organic loadings; temperature and salinity; parasites, pathogens and commensals; toxicants and other persistent pollutants; predation, and changes in sediment, suspended solids, topography and bathymetry. The interplay between factors in recognized and discussed based on evidence mainly from the published literature relating to temperate edible cockle beds. Anecdotal evidence is also reported from a structured survey of site-specific evidence provided by fisheries managers in England and Wales. Case studies from the UK and Europe indicate that there is often no single, clear generic cause of mass mortalities in cockle populations. The importance of linked site-specific scientific investigations and laboratory-based experiments to fill the gaps in our current understanding of mass mortalities in bivalve species is highlighted as necessary to take account of both local extrinsic and intrinsic factors

    Current standards for the storage of human samples in biobanks

    Get PDF
    Biobanks are diverse in their design and purpose; the idea of fully harmonizing historical and future biobanks is unaffordable and unfeasible. Biobanks should focus their efforts instead on developing and maintaining high-quality collections of samples capable of providing a wide range of biological information using processes that minimize introduced variability. A full data audit trail on sample processing, archiving, and quality control procedures should also be provided. This should enable the data derived from biobanks to contribute as part of wider collaborative efforts with other similar resources

    Differentiation of Agaricus species and other homobasidiomycetes based on volatile production patterns using an electronic nose system

    Get PDF
    Comparisons of the qualitative volatile production patterns between seven species of Agaricus, and between two of Volvariella and Pleurotus and one Coprinus species when grown at 25°C on agar media for 14d were made. There was good reproducibility between the volatile production patterns of the same species using an electronic nose unit with a 14 conducting sensor polymer array. Principle Component Analysis (PCA) showed that it was possible to discriminate between five of the seven Agaricus species, but that some overlap occurred between the others. Cluster analysis showed that there was also overlap between some species with the tropical collection of A. bitorquis separating out from the others. The volatile production profile of the commercial A. bisporus was close to that of a wild species, A. campestris. A. bisporus could be readily differentiated from other non-Agaricus species. This study demonstrates the potential for using electronic nose systems to rapidly differentiate mycelial cultures of homobasidiomycete mushrooms

    Senior Woman Administrators\u27 Perceptions and Experiences of Women Serving in Leadership Positions in Conference Offices

    Get PDF
    NCAA conference office Senior Woman Administrators (SWAs) were surveyed to gain their perspective on the gender disparity reported in intercollegiate athletics. The perceptions offered by the SWAs indicate the need for NCAA conference offices to implement professional development programming for women aimed at increasing management skills, developing best practice guidelines for including SWAs in athletic administration, and establishing mentor programs for women working on member institution campuses. Additionally, the results indicate directors of athletics need to create more meaningful opportunities for women to participate in decision making and include SWAs in meetings with coaches and other staff members

    Collisional stripping of planetary crusts

    Get PDF
    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ~20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176-Hf/177-Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to detectable changes in bulk composition of lithophile elements, but the fractionation is relatively subtle, and sensitive to the efficiency of reaccretion.Comment: 15 pages, 9 figures. Accepted for publication in EPSL. Abstract shortened. Accompanying animations can be found at http://www.star.bris.ac.uk/pcarter/crust_strip

    THE INFLUENCE OF SIZE ON PERFORMANCE IN WOMEN'S GYMNASTICS

    Get PDF
    Thirty-seven female gymnasts, aged initially between 10 and 12 years, completed a mixed longitudinal study over 3.3 years to investigate the effect of size on gymnastic performance. Subjects were tested at four-monthly intervals on a battery of measures including structural growth, strength and gymnastic performance. The size of these gymnasts at 150 months had a varying effect on perfmmance. Performances of front and back rotations, as well as the twisting jump were significantly, 'but inversely related to the height and mass of the gymnast. The twisting jump was positively influenced by a high ratio of strength to body mass. Gymnasts with large bodies also took Ilonger to perform the v-sit action, thus indicating poorer performance. A theoretical model was developed to demonstrate the effect of size on the ability to perform generic gymnastic skills
    corecore